
A note on the McCloskey’s algorithm for deciding

whether a regular language is a code

(Extended Abstract) ∗

Luca D’Auria and Rosalba Zizza †

Variable-length codes were investigated in depth for the first time by Schützenberger
(1955), by linking the theory of codes with classical noncommutative algebra. Briefly, a
language X over a finite alphabet A is a code if and only if any word w in X∗ admits a
unique factorization in elements of X [2]. The test for codes goes back to Sardinas and
Patterson (1953) and involves the definition of a set of words computed starting from X,
which contain the suffixes of tentatives of two factorizations of w. If X is a regular set,
the test ends and allows us to decide whether X is a code by checking if the empty word
belongs to one of the above mentioned sets [1]. When X is a finite set, efficient algorithms
have been designed by using different approaches (see [2]). All these algorithms run in
in O(nL), where n is the cardinality of X and L is the sum of the lengths of the words
in X. The problem of testing whether a recognizable set is a code is a special case
of a well-known problem in automata theory, namely testing whether a given rational
expression is unambiguous. If X is a regular set which is not finite, no one of the previous
algorithms can be applied. In [1, 2] it is shown that, if X is given by an unambiguous
automaton A, i.e., such that for each pair (p, q) of states there is no word which is the
label of two different paths from p to q, a procedure can be applied. The main idea is to
replace the computation on words by a computation on paths labelled by words. Thus,
the uniqueness of factorizations for a code corresponds to the uniqueness of paths in the
unambiguous automaton. We can determine whether a set X given by an unambiguous
automaton A is a code, by computing A∗, that recognizes X∗, and testing whether A∗ is
unambiguous [1, 2]. This can be done by inspecting the square automaton S(A∗), looking
for paths of the form (p, p)

u
→ (r, s)

v
→ (q, q), with r 6= s states of A. If such a path

is found, then X is not a code. This can be tested in linear time in the number of the
edges of S(A∗), i.e., in O(n2) where n is the number of the states of A. However, if X

is specified by means of an ambiguous finite state automaton A, the previous technique
cannot be applied. In addition, in order to make A unambiguous, in the worst case, it is
not possible to avoid the exponential explosion of the number of the states. In [1, 2] is
presented the flower automaton AD(X) as a universal automaton recognizing X, which is

∗Partially supported by the MIUR Project “Mathematical aspects and emerging applications of au-
tomata and formal languages” (2007), by the ESF Project “Automata: from Mathematics to Applications
(AutoMathA)” (2005-2010), by the 60% Project “Proprietà strutturali e nuovi modelli di rappresentazione
nella teoria dei linguaggi formali” (University of Salerno, 2007) and by the 60% Project “Estensioni della
teoria dei linguaggi formali e loro proprietà strutturali” (University of Salerno, 2008).

†Dipartimento di Informatica ed Applicazioni, Università di Salerno, 84085 Fisciano (SA) – ITALY.
E-mail: zizza@dia.unisa.it

1

unambiguous. It is shown that X is a code if and only if the flower automaton A∗

D
(X) is

unambiguous. Unfortunately, the flower automaton of a language has many states, and
it can be also infinite. To overcome these difficulties, Head and Weber (1993) proposed
an efficient algorithm to test whether a regular language X is a code, that involves the
construction of non-deterministic finite transducer associated with X. In this paper we
consider the different approach proposed in 1996 by McCloskey [5]. The advantage here
is that no hypothesis is required on X, i.e., the algorithm works when X is a regular
language given by a (DFA, NFA, ǫ-NFA) finite state automaton A, even ambiguous. The
core of the procedure is the definition of restricted automaton AR, which is constructed
starting from A in such a way AR is equivalent to A. Briefly, a finite state automaton A
is a restricted automaton if it is in restricted form, i.e., A has only one accepting state and
there are no ǫ-transitions into that state and no transition on any kind out of that state.
If A is not in restricted form, McCloskey describes how to construct the equivalent AR in
restricted form, avoiding the explosion of the states. However the proof of the equivalence
between A and AR is not given in [5]. Here we show that the proceduce for constructing
AR is not complete, by providing a counterexample, and a way to recover the McCloskey’s
algorithm, maintaining the time complexity O(n2), n being the size of A. In the following
we suppose the reader familiar with classical notions in formal language and automata
theory and here we fix only some notations [4]. Let Σ∗ be the free monoid generated by a
finite alphabet Σ and let Σ+ = Σ∗\ǫ, where ǫ is the empty word. Furthermore, |w| will be
the length of w ∈ Σ∗, |X| the cardinality of X. A code C ⊆ Σ∗ is a set of words such that
any word in Σ∗ has at most one factorization as a product of elements in C, i.e., for all
c1, . . . , ch, c

′

1, . . . , c
′

k ∈ C we have c1 · · · ch = c′1 · · · c
′

k ⇒ h = k, ∀i ∈ {1, . . . , h} ci = c′i
[2]. We denote by DFA (resp. NFA, ǫ-NFA) a deterministic finite state automaton (resp.
nondeterministic finite state state automaton, ǫ-nondeterministic finite state automaton).
We recall that that DFA, NFA and ǫ-NFA accept exactly the same class of languages,
i.e., regular languages. Let us present the McCloskey’s algorithm given in [5] (for details
regarding the correctness see [5]). The algorithm takes in input a finite state automaton
A recognizing X and decides whether X is a code. Let n be the size of A. The Step 2
of Algorithm 1 uses the following definition. A finite state automaton A is in restricted

form if has only one accepting state and there are no ǫ-transitions into that state and no
transition on any kind out of that state [5].

Algorithm 1 [5] Input: A finite state automaton A recognizing X.

• STEP 1. Check whether ǫ ∈ L(A). If is it so, X is not a code (by definition).
This step can be implemented by using a Depth-First-Search visit on (the graph
underlying) A, by considering only the paths labelled by ǫ. This can be done in
O(n).

• STEP 2. Check whether A is in restricted form (this can be trivially done by using
the definition). If it is not so, construct the restricted automaton AR equivalent to
A. This Step will be discussed in the next section.

• STEP 3. Construct the product automaton Â of AR. We notice that Â used
here is a variant of the classical product automaton and classical algorithms can be
applied to construct Â in O(n2).

2

• STEP 4. Find a path in Â from the initial state to the (unique) final state, which
passes through a semi-final state, i.e., a state [p, q] in Â with p 6= q and p = f

or q = f , f being the final state of AR. If such a path exists, X is not a code;
otherwise, X is a code. Also this step can be performed in time linear in the size of
Â, i.e., O(n2), as described in [5].

In (Section 4, [5]) the author describes how to make a finite state automaton in
restricted form (A′) in this way. Let S be the set of states of A from which accepting states
are reachable via ǫ-paths, i.e., a path in which all edges are labelled by ǫ. To construct A′,
start with A but make all its states non-accepting. Introduce a new state, f , which will
be the lone accepting state in A. For every transition (p, a, s) in A, where s ∈ S, a ∈ Σ,
let (p, a, f) be a transition in A′. Clearly, A′ is in restricted form, L(A′) = L(A), and the
size of A′ is bounded above by cn, where c is a small constant (and n is the size of A)
[5]. Let us now consider the finite state automaton A reported in Figure 1, recognizing
L(A) = a + aba. It is easy to see that A is not in restricted form and if we apply the
above construction, we obtain the finite state automaton A′ in Figure 1 (on the right),
which is in restricted form, but which is not equivalent to A, being L(A′) = a.

-
��
��
q0

-
a

��
��
q1

-
ǫ

��
��nq2

?
b

��
��
q3

�
�

�
��
a

-
��
��
q0

-
a

��
��
q1

-
ǫ

��
��
q2

?
b

��
��
q3

�
�

�
��
a

��
��nf

?
a

Fig.1: A finite state automaton A and its restricted version A′, obtained following the original paper

We recover this construction, by giving a precise description of the construction of AR.
Let A = (Σ, Q′, δ′, q′0, F

′) be an ǫ-NFA and let AR = (Σ, Q, δ, q0, F) be an ǫ-NFA defined
as follows: Q = Q′ ∪ {f}, f 6∈ Q′, q0 = q′0, F = {f}, δ : Q × (Σ ∪ {ǫ}) → 2Q is defined as
follows: a) for each q′ ∈ Q′, for each a ∈ Σ ∪ ǫ such that q ∈ δ̂′(q′, a), then q ∈ δ̂(q′, a).
Loosely speaking, all transitions in A are transitions in AR. b) for each q′ ∈ Q′, for
each a ∈ Σ such that q ∈ δ′(q′, a) and q ∈ F ′, then f ∈ δ(q′, a). Loosely speaking, each
transition that in A reaches a final state in F ′, is transformed in a transition that reaches
f in AR. c) Let S ⊆ Q′ such that for each q′ ∈ S, we have δ̂′(q′, ǫ) ⊆ F ′. Let q′′ ∈ Q′

such that δ′(q′′, a) ∈ S, a ∈ Σ. Thus in AR we add f ∈ δ(q′′, a). This step allows us to
eliminate the ǫ-paths in A, making the paths end in f . It can be easily checked that AR

is constructed in O(n). The main problem of the original construction is to consider only
the ǫ-paths (formalized in the item c)), whereas the definition of automaton in restricted
form requires the addition of other transitions (item b)). As an example, if we apply
our construction to the automaton in Figure 1 (on the left), we obtain the equivalent
automaton below which is in restricted form.

3

-
��
��
q0

-
a

��
��
q1

-
ǫ

��
��
q2

?
b

��
��
q3

�
�

�
��
a

�
a

��
��nf

?

a

Another example is depicted below (on the left the input automaton, on the right its
restricted version).

-
��
��
q0

-
a

��
��
q1

-b

��
��nq2

6

a

-b

��
��nq3

-
��
��
q0

-
a

��
��
q1

-b

��
��
q2

-b

��
��
q3

6a

?
b

��
��nf

�
�

�
�	 a, b

In view of the definition, it is easy to see that AR above defined is in restricted form.
By using the classical techniques in formal language theory, we can prove that the finite
state automaton AR is equivalent to A, i.e., L(AR) = L(A) \ ǫ. In conclusion, having
recovered the Step 2 of Algorithm 1 in time complexity O(n), we have confirmed that
McCloskey’s algorithm allows us to decide whether a regular language recognized by a
finite state automaton of size n is a code in O(n2). Our work has also concerned with
the implementation of the algorithm in Java 6.0, in order to verify its feasibility in the
same time complexity. The executable program (.jar file downloaded from [3]) allows to
have two types of input: the diagram of a finite state automaton and a regular expression
E denoting the language X, which is transformed in a NFA accepting X by using the
classical theorem [4] and thanks to JFlap (http://www.cs.duke.edu/csed/jflap/). Classes
have been also written to perform the translation between the JFlap data structures and
our data structures.

References

[1] J. Berstel, D. Perrin, Trends in the theory of codes, Bulletin of the European Association
Theoretical Computer Science, 29 (1986), 84 - 95.

[2] J. Berstel, D. Perrin, Theory of Codes, Academic Press, New York (1985).

[3] L. D’Auria, Progetto, analisi e implementazione in Java di un algoritmo ef-
ficiente per testare l’univoca decifrabilita’ di linguaggi regolari, Tesi di Laurea
Specialistica in Informatica (2010). The executable file can be downloaded at
http://www.dia.unisa.it/professori/zizza/X/JRC.jar

[4] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata Theory, Languages,
and Computation, 2nd ed., Addison-Wesley, 2001.

[5] R. McCloskey, An O(n2) Time Algorithm for Deciding Whether a Regular Language
is a Code, Journal of Computing and Information, 2 (1996), 79 - 89, updated version
downloaded at
http://www.cs.uofs.edu/∼mccloske/publications/code alg.pdf.

4

